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FIRST LECTURE

‘13 An important point to keep firmly in mind during these

lectures is that in quantum electrodynamics, Maxwell's equations

w
do not play a role similar to that of Schrodinger's equation.

Rather they are analogous to Newton's equations. E: and B  are
not similar to V¢ , rather they are similar to x and p

they are the dypamical variables which characterize the electro~

magnetic field. Just as x and p  become operators in quantum
mechanics, so do g and B . Just as Newton's equations of

motion remain valid as cperator equations in quantum mechanics,

so do Maxwell's equations.

[2.] 1In any field theory we have an infinite number of dynamical

variables = the value ét a given time, of the field quantities

at each point in space. In order not to obscure the basic ideas
with the complications of a vector field in threergpace dimensions,
let us consider the simplest sort of a field - that which describes

the small vibrations of a string. What we will show is that the

string can be regarded as a collection of harmonic oscillators.

To '"'quantize the string' we will then simply quantize the

oscillators.

13.] Let us denote the displacement of the string from equilibrium

by @®(x,t) . Then @ satisfies the one-dimensional wave equation



(we assume for simplicity that the string has a uniform mass per

unit length 9 and is under a uniform temnsion T)
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Note that we have no dispersion, in exact analogy with the

propagation of electromagnetic waves in free space.

l&l Associated with the motion of the string is an energy H

given by
RN IC N e DAE

the first term in the integrand clearly being the kinetic energy

per unit length and the second term the potential energy.

\5.] The motion of the string also produces momentum which
propagates along the string. To infer a formula for it, let us

write eqn. (3) as

H = Jf h dx .




Then we have (what we want to do is derive an analogue of

Poynting's theorem in electromagnetism}
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which, using (1) and (2) becomes
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which is just the desired analogue of Poynting's thecrem with

the quantity

playing the role of Poynting's vector and giving the energy flux.
We now argue by analogy that, just as in electromagnetic thaory
where the Poynting vector divided by c2‘ also yields the momentum

density, so here. Thus we infer that the 'wave momentum" is

‘ T ad) BQ /
63 = mk/h Py St S dx . (4)



(6. The general motion of a string can be quite complex and depends
on the initial conditions. However, there are certain especially

simple forms of oscillation - the normal modes of oscillation -

wherein all parts of the string move in a simple harmonic fashion
with the same frequency. It is trivial to verify that a superposition

of plane waves, one going to the right; the other to the left

pk ei(kx-wkt) * -i(kx-wkt)

‘+ ﬁ;k e

(5)

with é& constant and

is a (zeal) normal mode of oscillation. That is (i) clearly all
parts of the string are oscillating with frequency cOk , and (ii)
this expression is a solution of eqn. (1) under the conditions

indicated.

[73 A remark on notation: In what follows cok will always be
taken to be a positive number whereas k may have either sign.

This clearly involves no loss of generality.

[8.) so far we have not mentioned how long our string is nor have

we discussed boundary conditions. To have an analogue to electro-

magnetic waves in space it would appear that we should deal with a




string of infinite length. However, it proves convenient to consider
a finite length L and then go to the limit L =¢@ . As to bourdary
conditions, the simplest ones to employ are the so-called pericdic

boundarv conditions which require, if we assume our string to

stretch from -L/2 to L/2 that

L L
0C- =5, ) = 05, 1) .
Applied to (5) this implies that
KL = 2¢t , 4= 0, +1, +2 , ... (7)

which, in turn, insures the orthogonality of the normal modes:

L/2

L &, , (8)

i(k=K )x
dx e v K, K

-L/y

Other choices of boundary conditions, for example, that the

string be fixed at the twc ends, i.e.

O(-L/2,£) = O(5=,t) = O

imply restrictions on k and Fk and are more cumbersome to
deal with. 1In any case one can argue that in the limit L —=»0° ,

which is the case of real interest to us, the exact nature of the



boundary conditions should be unimportant.

[9.] The general motion of the string can be written as

O(x,t) = Z (‘Qk ollkr-w ) B: i (k- w £)y
k

%
where the ﬂk and Bk may be determined from ¢(x,0) and (—S{P—)

via Fourier's theorem (recall eqn. (7) and (8)).

{IOJ Let us now introduce the dynamical variables (i.e. they are

time dependent) bk = 'Qk e_l(")kt and write

ikx *  -ikx
¢(x,t) = Ej (bk e + bk e )
k

Then we see that the infinite and trivial set of differential

equations
db db: *
k = -i wkbk s = i wkbk )
dt dt
are exactly equivalent to eqn. (1) - the normal coordinates bk

give a dynamical description equivalent to that provided by the

field. Further from our point of view, the introduction of the bk

as dynamical variables rather than the field will be especially

helpful because:




(a) they form a discrete (though infinite) set, more like x

and p and

(b) because their equations of motion, the ordinary differential

equations (9), begin to seem more like Newton's equations which we

know how to quantize, than the partial differential equation (1).

[11;] However, in classical mechanics one is not used to dealing
with complex dynamical variables and the relation cf (9) to a
Newtonian equatien is certainly not clear. Evidently, however, (9)
is describing a simple harmonic oscillation and indeed, in the
quantum mechanical treatment of the harmonic oscillator, it has
proved convenient to introduce complex variables. Namely, let us

define (we are discussing an harmonic oscillator now)
b = (mewx + ip)

Then from the definition of momentum

dx_ _
m g TP
and Newton's equation
_dR = -m wzx

dt



one readily finds that
%
db , db _ . %
e = -~ itwb e iwhb (10)
Thuz we have shown that we can describe the
ies which formally behave like a

just of the form (9).
set of dynamicsl varigb

a

string bv

set of harmonic oscillators.
To prepare for the

So far all this has been classical.

112.]
introduction of quantum mechanics it is convenient to redefine our
For the field we will write

dynamical variables a bit.
4
b = \‘ 2g w, L “k

and for our harmonic oscillator we write
a
and

a , of course, still satisfy equations of the form (9)

A

(10) respectively.
and a

and
Further, for the harmonic oscillator, we see immediately that
*
a becomes

the energy expressed in terms of the
* *
wiaa + aa)

2 .
H= -2 43 o o?? = o
2m 2 3
where, in preparation for the introduction of quantum mechanics, we

have been careful about the order of factors.




We will now show that thanks to our choice of constants in the
definition of a, the energy and momentum of the string take the

form

Nige

4 = zz % * ‘
i = Wk(ak a + akak) (11)
Kk .

* *
_li'flk (akak + aa ] (12)

D
[}
[

The calculation involves simply substituting

- , ys! ikx % =ik
¢ = z _ZSWkL (ake + a8 ) (13)
k

and

g% = Z /T&,T (-1 (a, e - ak e (14)
k
k

into (3) and (4) and carrying out the integrations using (8).
Let us illustrate by calculating H . It is convenient to rewrite
(13) and (14) by changing the variable of summation in the a®

terms from k to =k . Then we may write

b = Jikx gg _ 2 JLkx
= N > St Py
| k

k
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where
Jrsh— (s, +a’) and T (-1 (ay -any)
k ;zgka k k k Zgka K4k k’.

Then since

éQ_ < ‘kq ikx
x L Tk
k
(3) becomes, using (8)
_ 1 12 ‘
H—ZL(?_gpkp“kﬂL > T kiga, ) .
k
, , e | 2 20, .
Reinserting the definiticuns of Py and q; and Tk~ = Uﬁ(g(u31ng
(2) and (6), this becomes
r ‘-
- =) - (@) (e, - ay)
= Wy A B 7 B
k
( % %
+ _ak~+ amk)(auk~+ a)
1 Zh boaa )
=2 w33 dok®-k
k
which is exactly eqn. (11) when one notes that Ej h(ﬂkafkank =
* k
hcokakak . The calculation of ® is similar.
k Note that, as must be the case, H and ® are independent
% %
of time, all time dependent terms like a a or a8 having

cancelled out.
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113) We are now ready tc introduce quantum mechanics. Consider

again the harmonic oscillator. The standard rule

i
i
=g

%, Pl
immediately implies

La, a3

]
=

%
with a now identified as the Hermitian

(15)

conjugate of .a . "Newton's"

equations of motion,

i aa*
a ) a
-— = -iwa _ =
dt ’ t

as an operator equation then follows from

mechanical formula for a time derivative:

& A[HF]
dt L

with F replaced successively by a and
This suggests that for the string we

commutation relations:
%*
[ak’ 8. 1 = gkk‘

1ak3a’k|] =0 5 tai,a;y =0

iwa

the standard quantum

a*.

similarly introduce the

(16)

a7



where we have assumed that dynamical variables associated with
different normal coordinates commute, muqh as one assumes that
variables referring to different particles commute.

These assumptions are then (partially) justified by noting

that the "field equations"

*
dak C i ‘dak .l w %
at k % ° dt Loway

then follow directly as cperator equations from

da ,
..c.i-E-lS- 2 “‘;11““"' {H’ dk] 9 etc.

‘,14“] What are the eigenvalues, E and P of H  and @? For
the harmonic oscillator we see that since aa™ = a*a-+1 ‘we can

write

H o= Ao (a¥a + izt- )

and since the eigenvalues are well known to be En =Hhw (n + %‘) R
we infer that the elgenvalues of a¥ a are the integers -

a*a ig_the number operator. Then, by analogy, the energy and

momentum eigenvalues for the string are

= L. =
k

12
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- - L

P iNY —Xﬁk(Nk+ > ) (19)
k

i.e. we have gquanta! - but that's about all. That is, it should

be emphasized that the upshot of all this discussion has been
rather trivial: Each normal mode of the "free" string is
characterized by its wave number k . In each mode we can have an
arbitrary number of quanta (Bose-Einstein statistics) each having
energy +h ka and momentum 4k .
115) The ground state or 'vacuum" is that state with all Ny = 0.
. _ ﬁ4ﬁk Co e s e
For this state E = is infinite. On the other hand,
2 s
from symmetry, (we habe as many positive k's as negative) the
momentum of this state, P = Z% ik = 0 and the Z‘h k%
. k k
term may be omitted from (19).
The presence of the infinite 'zero point energy' in (18) is
a bit disturbing. One may argue it away by saying that anyway
only energy differences are important. Alternatively one may say
that classically we could anyway have replaced a;ak + akaﬁ by
Za;ak . However, what cannot be talked away is the nonetrivial
character of the ground state = that there are quantities such as

a” which have non-zero expectation values in the vacuum (applied

*
a
k™k
to the harmonic oscillator, the non-trivial character is revealed

as the finite extension of both the coordinate and momentum wave

functions - the particle doesn't just sit at the bottom of the well).
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This is a true and observable quantum mechanical effect. The vacuum,

so to speak, has properties!

[16J As we have mentioned, our results to this point are essentially

trivial. Things become interesting when one introduces interactions

(perturbations). In dealing with interactions we will need matrix
elements of our dynamical variables between the energy eigenstates
of the free field. Happily these are quite simple for harmonic

oscillators and all calculations may be done without explicitly

introducing wave functions for the field. (such wave functions

would be infinite products of harmonic oscillator wave functionms,

*
one for each mode, which are functions of x ~ a, + ak).

k k

Let us first deal with the harmonic oscillator, the generalization

to the string being immediate. Consider the nth excited eigen-

state 1yn . TFor this state aay. = n . Consider now the
n n
*
state aV, - If we let a a act on this state we have
* * *
= a'a,a
aaay La™a, ] Wn + aa aWn

= -a\yn + an\yn

(n~1) a Wn

whence we infer that a Wn is proportional to . More

detailed discussion shows that in fact




a¥ = V¥, (20)

In a similar way one shows that

*

a V¥

n

o+l Vg : (21)

For the harmonic oscillator then a is a lowering operator,

and a* is a raising operator. In field theory, by analogy,

a is best described as a destruction operator and

as a creation operator. Applied to a state with Nk quanta

in mode k , and arbitrary numbers of quanta ir other modes, ay
produces JEL times the state with one less qyantum in the
kth mode, the number of quanta in other modes remaining unchanged.
The ai produces QF%-+'1 times the state with one more

quantum in mode k, the number of quanta in other modes again

remaining the same. Applied to the vacuum any ay yields zero.

117.) There is another approach to the quantization of the string,

the so-called canonical method, which is very elegant, but which

unfortunately doesn't work in a simple way for the electromagnetic
field. It is most directly derived by considering the string as
the limit of a large number of particles joined by a weightless
string. One quantizes the particles and then passes to the limit.
The ¢(x,t) would then be the position of the‘particle at

while —%%— would be its velocity.

15



We will not carry through the details of this procedure, but we
mention it because this picture then leads us to expect that

‘¢(x,t),¢(x;t)] = 0 for all x and x' , while E;¢(x,t)) (~%%)X,,J =0
for x # x' , but not for x = x' just corresponding to (15) and to
the fact (see also {13] ) that dynamical variables associated with
different particles commute.

Direct calculation then shows, using (13) and (14), (16) and (17)

that, as we expect

it
o

Loe, o), oeo)]

Y_(T)(x,t‘.), 9(’%%) ﬂt] = ih & (x-x%)

where we have used

1 }: eik(x-x“) - g(x-x")

Loy

[18.] Given the Hamiltonian Hw(a®a+aa*) and the requirement that

i
da . 1 Tual
dt h[’
should yield
da - Ljwa
dt

* , .
and similarly for a , another possible quantum rule is




a*a + aa* =1 , aa= aa = 0

which one can show yields Fermi-Dirac statistics.

For the string we might thus use

* + % _ é

% k! L S
akak, + a1a, = 0

a: ai, + a;, a: = 0

However, when applied to ¢ this yields, for x = x'

O(x,t) O (x,£) + O(x,t) O(x,£) = O

i

that is, ¢2 = 0, which implies that ¢ = O since ¢ is a

" 1

Hermitian operator. Since ¢E() means ''mo theory'" we conclude

that we cannot consistently quantize the string according to

Fermi-Dirac Statistics.

1191 1n the commutation relations we have written down thus far,
all operators have been evaluated at the gsame time. Since, for the
string, we know in detail how the operators depend on time we could
also (though we won't) evaluate commutators involving operators at

different times. 1In the presence of interaction we are not, in



general, able toc do this latter exactly. Hewever, in a general way,
we may expect that though the interaction mey modify the commutators

involving different times, it will not mcdify those invelving a

common time. We argue here by analogy with ordinary quantum
mechanics. The rule (15) which relates the cocrdinate and momentum
of a particle at the same time applies in all circumstances

(i.e. whatever the interactions), and again at the zame time,
variables asscciated with different particles for with different
degrees of freedom of the same particle) always commute. However,

if the particles interact then variables associated with different
particles (or with different degrees of freedom of the =ame particle)

at different times will, in general, not commute. Indeed, this is

just an expression of the fact that the particles are interacting,
i.e. that a measurement of, say, the conrdinate cf one particle can
affect the coordinate of another particle at a later time. Also, as
another example, the commutator of the momentum of a particle at

one time and the coordinate of the same particle at another time
will depend on the nature of the forces to which the particle is
being subjected (with no forcee, it is in fact independent of the

time difference).

{203 The underlying philosophy of our discussion has been to view

the formalism of quantum field theory as a direct extension of the

formalism of particle mechanics to an infinite number of dynamical

variables. We have tried to play dewn aifferences. The use of a

finite L helps us here by making our ultimate choice of dynamical
. *

variables, the a, and &

If we introduce interaction, then our procedure wili be to express

a discrete, though infinite, set.

18
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the new Hamiltonian again in terms of the a and aﬁ (and usually

variables describing the system with which the field is interacting)
all referred to a fixed time - just as one expresses the Hamiltonian
4

for interacting particles in terms of their x's and p's at a

fixed time. Once this is done, we may use standard quantum
) y 1

mechanical procedures to carry out calculations. These calculations

are usually most simple if, one way or another, we use the free field
energy eigenstates as a basis since then we may use the simple results
of 116.] to evaluate matrix elements. In these lectures we will use

only perturbation methods, however one cap also use variational

methods, etc.

[213 An Example: Suppose our string is perturbed in such a way
that an extra term appears in H of the form g&(0,t) where g is
a constant, the coupling constant. Expressed in terms of the basic

dynamical variables, then

% 1 4 %
H = z f Wy (akak+ —2) + gz 'fm—zgka (ak+ak)

Kk ;

= HO + gV
where, to keep the problem simple, we have not introduced any
dynamical variables associated with the perturber.
Actually, this Hamiltonian is sufficiently simple that we can

find its eigenvalues exactly. However, let us treat it by
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perturbation theory confining ourselves to the ground state, the

vacuum. Denoting the unperturbed vacuum by Wo , the first order

energy correction

(1) _
E - g( WOJVWO )
is seen to vanish because ( Wo,akWO )= 0 and
* = =
C¥gsap ¥y )= (g VeV

for all k.

The second order correction is

2

E -E

o N

N

From [16.] we see that theﬂ%qwhich contribute are the one quantum
states - there is one quantum in some mode k , no quanta in any
other mode. For such a state, EO -Ey = -hcok (the zero-point
energy cancelling), and ( WO,V WN ) =\,§?E;{i since only the
ay term in V contributes and the matrix element of ak is one

(Nk = 1). Thus we have
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Let us now take the limit L -»¢® ., The spacing of successive

k values then becomes very small (namely from eqn. (7) we have

Ak = X

L

whence we can replace the sum by an integral according to

’ L L
z..o = ‘Z[—Z Ak ... —Qa—ﬁ—fdko.a ) (22)
k

k

In particular, then, our second order energy becomes

; 2
2 _ . _r°_ dk
E = g h/ﬂ G%{—

which is a divergent integral, because of the behavior of the

integrand near k = 0 (infra-red catastrophe).

The main purpose of this example was to 1llustrate the
application of conventional quantum-mechanical methods to field
theory. It has also served to provide our second encounter with

infinities in field theory.
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SECOND LECTURE

[20.)] Maxwell's equations for the electric and magnetic fields

produced by charges are

1 oB
\vj R e, =
"}{ér + c ot 0
V-B = 0

(23)

i<
"
|
7t
|
E

v-E = 4 @

where j and g are the current and charge densities due to
charges. To complete the dynamics, we must then adjoin Newton's
equations describing the motion of the charges in response to the

field. As is well-known, we can satisfy the first and second

equations identically by introducing the vector and scalar

potentials A and ¢ according to

|
1t

I
bl

1>

Q/
=

o™
i

1
(e} lH

'

1
=

(24)

(md
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Since we know further that A and ¢ will, presumably, occur in that
part of the Hamiltonian describing the interaction of matter and field, since
for example, for an electren in given external fields the Hamiltonian
is

e 7o
- ) . e ¢(bxt)
2

Thus we are naturally led to use A and 0 as dynamical variables rather
than § and B
The last two equations of the set (23) then become the equations

of motion for A and ¢ :

2A
1 02 _ g2 4%
—_ == -VA + V(VA+Ll )y = — j
2 T2 A TEErL g ©
(25)
~v2¢ - L —a—(VA) = 4y
c ot == $

121.} Given A and ¢ , eqn (24) determine §: and B uniquely

and since € and B are the physically measurable quantities

(it is they, rather than A and 0 which occur in Newton's equations
of motion), this is fine. On the other hand given B and & ,

eqn. (24) do not determine A and ¢ uniquely; Namely, given g set
of A and 0 we can find any number of others which yield same

g and B according to
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A > A+ v

o> o- L

C

where /& is an arbitrary function. The invariance of B  and § 5

and hence of measurable quanties, to such transformations is called

gauge invariance and such a transformation is called a gauge transformation.

[22.] since we have decided to use A and ¢ as dynamical variables,
the problem then arises of choosing a gauge in order to fix them

uniquely., For our purposes it will be most convenient to assume that

. (26)

This is the so-called Coulomb, or radiation, or transverse gauge.

One can show that if one starts with an A which does not satisfy
(26) then one can always find a /X. such that the transformed A
will satisfy (26).
[25] With this choice of gauge, the second equation (25) becomes

V2¢ = =47 S

with the immediate solution



b = )y

Iz - % ()]

where q; 1is the charge on the i-th particle and x, its position.

Thus ¢ is no longer a dynamical variable as far as the field is

concerneds it is completely expressed in terms of dynamical variables
associated with the particles (all evaluated at the game time).

Thus we have further reduced the dynamical variablesof the field
to A , subject to the gauge condition (26) and its equation of

motion, (the first of equations (25)) which is now

1 92A 2 1 90 i
P —_— - — = _— 2 7
") e ViA+ ¥ o br 2 (27)
[26.] Let us first consider free fields, 8== i = 0 . Then

¢ = 0 and A satisfies the three dimensional wave equation

2
1 o%A o2
c2 dt2

Quite in analogy to eqn. (13) we now analyze A into normal modes

2 ) .

2 =ZZ e € Ta, T ey SEE] )

- W L -IS)S }i_,S .IS.)S
k s=1k "k

where we have imposed periodic boundary conditions in a cube of

volume L3 so as to replace A by the discrete set of dynamical

%

variables a
k,s

k,s ’

-

a , since from these boundary conditions it

25
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then follows that k is discrete:
k = 2ty 5 «,¥,,v, = 0, +1, 2, ... (29)
L

In addition we have
fi’i JIEK )x  _ 3 gk L. (30)

The vector k tells us the direction of propagation of A in

a normal mode and the unit vector E%’S tells us its state of
b

polarization. The gauge condition, equation (26), is then satisfied

by having

. € = 0 (31)

|=
LW
7]

i.e. we are dealing with transverse waves. Since we can associate

only two linearly independent polarizations s with each transverse
wave the sum over s as indicated runs from 1 to 2 . We assume

(without loss of generality) that

g (31')

g'k,s ) g‘l(_,s' S8’

i.e. the f;'s are orthogonal unit polarization vectors.

The fact that we are able to satisfy the gauge condition so

simply - eq. (26) has now become simply an operator identity = is

an additional reason for our choice of the radiation gauge over
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other possibilities. 1In particular the more elegant and relativistic

Lorentz gauge V-A + % —%% = 0 cannot be readily incorporated as
an operator equation and requires special conditions on the wave
function (Fermi method) or an indefinite metric in Hilbert space
(Gupta-Bleuler method).

Using the ég,s and a;,s , as our dynamical Vgriables the

discussion now exactly parallels that for the string.

The wave equation for A now implies (and is implied by)

da, s da’ *
L) = -i w,a k,s i (L
it Klos 7 o = Mk (32)
where
2
s SR :
k2

Fur ther by direct calculation using (30) one readily shows that the
constant factors in the square root in equation (28) have been

chosen in such a way that the energy in the electromagnetic field,

1 2 2
=8_I;f(£+B)d_X >

takes the form




28

and the momentum

L [ Exs

g? = 7 Jﬁ dx
c

takes the form

6> =% 4k (a* a + a a* )
= zz = ks ks T %k,s Tks
k s

[273 The Analogy with the string is now complete making due allowance
for three dimensions and two polarizations per normal mode. We can

now go over directly to quantum mechanics. The dynamical variables

*
a o and & o become operators which are one another's Hermitian
- 3
conjugates and which satisfy the commutation rules (similar to

equations (16) and (17)).

[ak_:s P) a;;sl] = h:.lf., S,S' (33)
E *
(s > o) = 0~ o oas']

The energy and momentum eigenvalues become (similar to equations

) ) a4 w
k s -

E: E: Bk Nk s

k s -

*
Thus we have photons! The dynamical variables a, and a
%8 k,s

become destruction and creation operators respectively for photons

(18) and (19))

E { N&:Sk

® iNli,s}

of momentum 4k , polarization s .

[28.] We now wish to introduce interaction with charged particles.

With no interaction, i.e., with all charges equal to zero, the

Hamiltonian would be, using non relativistic mechanics for the particles,




2
% L Ei
Ej Ej 4 UJk (ak,s aE:S + X)) + E:
i

The first term describes the free radiation field; the second, the
free motion of the particles (we are assuming only electromagnetic
interactions). When we put the charges different from zero, two

sorts of interactions occur:

(i) the coulombic interaction of the particles among themselves.

This is a direct interaction between the particles. 1t has nothing

to do with the dynamics of the field. It is, of course, in a sense,

"due to'" ¢. But in our gauge, ® is pot a dynamical variable
associated with the fields (recall [25] ).

(ii) The interactions of the particles with the field. As we
shall see, this interaction gives rise to effective magnetic
interaction and retarded interaction between the particles, as well

as describing the interaction of matter and photons.

[129] We now simply state that the appropriate Hamiltonian which

describes the interacting matter and field is

7‘c
Ej }j Jh“’k k,s ak,s + %)
AIT
lx -X l

Here éi is the vector potential evaluated at the position of

the ith charge 1i.e.
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ik x, * -ik-x,
Z Z[Zﬂhc éh,s [‘abs e == + ah,s e 1] (35)
k s

and eqn. (31), (31') and (33) continue to hold (with regard to (33)

recall [19]). If there are also external fields present, AgEXt)

should be added to Ai and Ej qi¢£EXt) should be added to H .
Note that the structure iof this Hamiltonian is really quite
familiar. It is gotten by simply adding the Hamiltonian of the
radiation field to the familiar Hamiltonian of a number of charged
particles interacting among themselves via coulomb forces and in
addition interacting with a vector potential. The presence of the
radiation field Hamiltonian insures this vector potential is a
dynamical entity not only acting on the particles (as an external

field does) but also reacting to them.

130.] We have said that this is the "appropriate Hamiltonian".
What we mean by this is simply that using the commutation rules

and using the general operator equation of motion
dF i
ey = h [H)F]

applied to F = ag,s , F = Z; and F = B; one will derive

exactly the extension of (32) to the interacting case, i.e. one

will derive Maxwell's equations, and one will derive Newton's




equation describing the motion of the i-th particle under the

influence of its electrostatic interactions with the other particles,

and under the influence of the electromagnetic field represented

by éi.'

[31)

We now wish to apply our formalism to varicus problems.

QOur
basic tool will be perturbation theory with the unperturbed
Hamiltonian taken to be

N .
= 3
H /. 2_. hu{{(ak’s al_<_,s + %) |
k s (36)

+.

Riz :ﬁ Qin
— 1 -

EZ 2mi + ZE:L~ |

i

it]

and the perturbation is then (in our gauge, B; and éi

commute)

) ‘
) q.
= Ez .4 p A + Ej —i 2 (37)
m,C =i =i 2 =i

Thus the unperturbed eigenfynctions are simply products of

eigenfunctions of the free radiation field and eigenfunctions
describing charged particles interacting via coulomb forces.

Note that our expansion parameter is basically the charge

(the dimensionless parameter is VX where ok is the fine structure
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constant

= € N_l_
& e 137
and, in this sense, V1 is of first order, V2 is of second order.

[31*] 1f we would also include spin explicitly there would be

additional terms in V . For example, there would be terms of the

§i-§i type representing the direct interaction of the spin with
the. magnetic field, and there would also be contributions from the

spin~orbit interaction when one replaces the B, in the orbital

angular momentum operators by By + qj éi . We will not
' d

consider these terms any further.

[32.] We will assume familiarity with stationary state perturbation

theory. Indeed, we have already used it in 121} . We will also

need time-dependent perturbation theory, whose formulae we will
derive below. We emphasize that this is a method, like stationary
state perturbation theory, which is of general use in quantum
mechanics, whenever one has time-dependent processes. It is not

a technique which is peculiar to field theory.

[33.] One may well ask, why do we need time-dependent perturbation
theory when our Hamiltonian H does not involve the time explicitly?
To answer this, let us note that the kind of problems to which we

will apply this approximation are in the nature of scattering problems -
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problems in the continuous_spectrum. Let us, therefore, comsider a

typical problem of this type (which is nct a field-theory problem) =

the scattering of a particle by a potential. One way of handling

this problem is to deal with an energy eigenstate in the continuous
spectrum and look for wave functions which, at large distances from
the scattering center, have the form of a plane wave plus an outgoing
spherical wave. The former one is identified with the incident wave,
the latter, with the scattered wave.

Though this procedure leads in the end to correct results,

note that it is not an accurate description of a physical scattering

experiment:

(i).Energy eigenfunctions in the ccntinuum are not normalizeable.

(ii). The plane and spherical waves overlap everywhere in space
and, therefore can't, in fact, be disentangled.

(iii). The wave function is continually non-zero in the region
of the pofential, i.e. scattering is always going on.

The remedy for these conceptual difficulties is to use

realistic wave packets which as in an actual experiment confine

the incident particle to a normalized moving "lump'. This then

means a non-stationary (time dependent) state, and does permit a
clean separation (except in the region of the forward direction)
between incident and scattered waves again as in an actual
experiment. However, wave packets are messy to deal with and,
in the end, the details of the packet cancel out. (During the

interaction the potential, if it is of atomic or molecular




dimensions, can't distinguish between an experimental beam of small
cross-section, and a plane wave.) Another, formal, procedure which
allows us to use plane waves, etc.,, but still allows a clear
distinction between incident and scattered waves, is to make the

interaction V time dependent,

v > vy yit!

where ) is a small positive number. This insures (as with a
packet) that there is no interaction in the remote past in the
remote future. At the end of the calculation, one may let -0 .

Thus we are led to the need for time-dependent perturbation theory.

[34] Now to the formalism. Our Hamiltonian is

g Ho= HO+ ve it

We will denote the eigenstates of Ho by WI’ wF’ etc. so that.

HOWF = EFWF , etc. We wish to solve the time-dependent

Schroedinger equation

- | ‘
Hy = i ot (38)

subject to the condition that in the remote past

e-iEIt/ﬁ

.

Vo= Y
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To do this, we write

=iE_t/h
11,( - Z gF‘l(Fe ¥
F

If V=0, the gp are constants. Because V # 0, they are not
constants. Hence this method is sometimes called by the curious

name, ''the method of variation of constants',

Inserting this expansion into {38) and using the orthonormality

of the V_ one readily derives

F

- I 5 - f -

i F'
FV

We now introduce perturbaticn theory by expanding in powers of V

The zero order approximation is, of course, simply Bpt = SF' I
' 2

Inserting this on the right hand side of (39}, we get the first

approximation
d i(E_-E LI t
_ A "&EF_ = (V1) e EprEIEA - P
i

which we can immediately integrate, subject to the initial

condition, to find

t
- i S i(E-E.) t'/h -mth |, (40)
8 = SF,I - h_(FIVII)‘/P e " F 1 de'.
=00
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{35) The quantity of actual interest is the transition rate into

the state F #% I for positive values of t (the maximum interaction

clearly occursat t = 0). Thus we want

‘ N %
0 2 Ogp agF

T = = gl = g¥ + g

FI St | & F ot ot F

One splits the integrallin (40) into an integral from =e® to 0 ,
and an integral from O to t
In the former Wit't = -pt' , in the latterpit't = pt’ .

One finds, after a bit of algebra

27 4 . .
1 23 i(E-E)tM -9t
T = —— y V(FLvITD) | {e F I
FI 4 (Eg-E[)“ + (h)
e i - ENt/-pt 29 tk .
We now let 7-’0 . Note the first factor becomes zero if

EF-EI # 0 and infinite if EF - EI = 0 . Indeed,

Lim 1 €
€20 %% + €2

is a well-known representation for g (x). Further, with 7 =0

and EF-EI effectively equally zero, the final bracketed factor

becomes unity so we get the famous formula (the "goldeﬁ rule') for

the transition probability per unit time



- 2
FI1 4

T 1(FIVIT) )2 ngF=EI) . (41) .

The g function clearly expresses the overall conservation cf

energy. How one handles it to get finite measureablie resulrs will

be discussed in the next lecture in connection with applications.

136) 1If one goes to second order in V , one finds a similar

formula but with (F| V | I) replaced by

o Ey-Bp

FLVvIiI) + z (FIVIFOHET VIT1)

the states wF' , appearing as virtual intermediate states.
Since they are transitory, there is nc contradiction with
conservation of energy (recall AE.At ~ %) in the fact that

oy + E; i.e. energy'not conserved" in intermediate states.

[37.] 1In preparation for the applications, it is useful to note

the nature of the non-zero photon matrix elements of V

Clearly 'V, can create or destroy any one photon (k,s), we

1

can represent this diagrammatically by (these are not Feynman

diagrams)
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creation of destruction
a photen of a photon

where one imagines time to increase from the bottom to the top
of the diagram. Similarly V2 can create any two photons, or

destroy any two, or destroy one and create another.

creation destruction destruction

of two of two of one

photons photons photon and
creation of
another

photon.
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THIRD LECTURE

[38.] As our first application of (41) ; we wishk to discuss the

spontanecous emission of light by a bound system (we will call it

an atom) in an excited state. Let us first note that it is not
at all clear that equation (41) applies since so far as the atom
and the radiation is concerned this is nmot a collision process.
Rather at some finite time (i.e. not - @ ) the atom is excited,
say by collision, with another atom, and we want to know the rate
at which it will emit light. We will return to this point of
principle after we have completed the calculation.

[39:] Let us take the state V. as a product of the photon vacuum

I
and the wave function for am atom in state j while WF is a

product of a wavefunétion describing one photan of: momentum Ak

with polarization s and the wave function for an atom in state f ,
For simplicity we will put the mass of the nucleus equal to oo

so we are dealing only with the electrons. Thus, q; = e and m, =m .

F I £

From [37] , it is clear that the only term in V which has

Also we have E_ - E_ = /ﬁaok +E,_ - Ej°

a non-vanishing matrix element for this process is

2 1% * -ikex,
e { 2:dhc ] EZ g&vs . By a.l_{JS e i

mc , -
1

Since, further, the matrix element of ai - between the two photon
ks



states involved is unity (from equation (21)), we have in obvious

notation

2

T..(k,s) = 2n e 212 Z —ikex,f N\f2
£ ¥ 25 [ <l ey ab
x § (B, + /m?{ - EQ

and we are still left with an electronic matrix element to calculate.
It is the vanishing or non-vanishing of this matrix element which

gives rise to all the familiar gelection rules.

Now to "handle" the &-function. We observe that in the
(physical) limit, L-—=a@> , we are not really interested in the
probability that the photon emerge with a particular momentum Ak ,

that is, in a particular direction since this is impossible to

measure! WNo detector has infinitely sharp angular resolution. At
best we want the probability that the photon will emerge in some
range of solid angle. To infer a formula for this, let us sum our

formula for T over all photons to find the total transition rate.

In the limit as L -™e@o, this involves (generalizing equation (22)

to three dimensions) times an integral over k and a sum

L
@3
over s

Because of the presence of the S‘function, we can readily carry

out the integration over -ﬁcuk if we introduce it as a variable of

integration. To do this, we introduce gpherical coordinates in k

space. Thus

40




3 3

L . _L° 2
2y dk TG Kk d_()_.5

3 o®
L k dfico,) df2.,. =T o ddhw,)
(2n)3 Ac3 : k 'f K

? is often called the density of final states or the phase space

3

factor, the latter name because L°dkx is ordinary space times

momentum space = phase space. Carrying out the integration over
Afaok we have, collecting all factors (note that the L3 has

cancelled out)

2
Z o N[2
Total transition rate = er.fl.K (2ﬂﬁc3) zz (<¥l "'lf7‘
s

where now

W | = = (Ej-Ef)/A

Ffom this formula we infer that the differential transition

rate for emission in the solid angle dj).k with polarization s is

T m%z ,&‘%,s Z P-ie-ik"%(?lz ca

This is the result we were after.
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[AOJ What we have calculated is a specificzily quantum mechanical

effect. We started with our atom in a statiomary state (no
oscillating charge or current densities) in the dark (no photons)

and yet we have found that it radiates! Claséically, in order to
make such a system radiate; the presence of a field would be
required. In fact, and it is here that the quantum mechanics enters,

there is such a field even though there are no photons. Namely,

one finds that although in the vacuum the average values of g;
e
and B are zero (these operators are linear in a o and a; s)
=) -
8 2 2 ; , .
the averages of C and B" are not (recall the discussion in [15
of the nontrivial character of the 'vacuum"). To put the matter

another way, one readily verifies that gi and B do not commute

with the Nk G Thus, no photons does not mean no _field, and there ig
-

a fluctuating electro-magnetic field in the vacuum. It is this
field then which can be said to '"cause' spontaneous emission;

though we will not attempt to show this in any further detail.
[41] One further point. We have cal:ulated the probability feor

the emission of one quantum. However, a system in general may

also emit 2,3.-e quanta provided only that

Such multiple quantum transitions are well krnown in microwave and

radio frequency spectroscopy, and, with the advent of lasers, can




also be seen in optical spectra (in absorption). As yet, none has
been detected in nuclear transitions. As to the calculation of the
probabilities for such transitionms, V2 clearly gives a possibility
A . * *
of 2 quantum emission already in lst order (the a a .
k,s k,s

while V1 , can give two quantum emission in second order.

- |

Emission of Two Photons in Second Order

terms)

Two quantum emission is also of interest in astrophysics since in
‘o 2 .
the transition 2 SJE —p 125% in hydrogen, the one quantum

transition is very highly forbidden. More quanta become possible

in higher order perturbation theory (and involve more powers of ot ).

IﬁZ.] For optical transitions it is usually a good approximation to

put e’lk'zi = 1 . This is because the size of an atom is ev a,
e e 1

while /ﬁwkNT whence k-x, ~ 2= = d”ﬁ .
o

This approximation is the familiar dipole approximation since then

our electronic matrix element is

<flz 2, ]i) = imw<flz 5i| j>5 imew Ry,
1 1

gfj being the transition dipole matrix element. In this
approximation then, we get the familiar result that the differential

transition rate 1is
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e 178 . 2
TE €. 5fj§ a£),

If we multiply this by Med to get the differential rate of
energy emission then the explicit dependence on K disappears and
we get a result identical in form to that for the radiation from a

classical oscillating dipole.

[§3;] Now let us return to the point of principle broached in [39] o
The total transition rate, call it (ﬂ}j ; is a finite number.
Clearly then our result taken literally yields nonsense if applied
for time intervals, t , longer than fw.ahl since then the total

t]

probability of emission,rﬂ

£ t, will be larger than one!

Closer_ examination of the problem yields the following results:

Let us first confine our attention to the atom, i.e., we sum over
the photons, and let us suppose that the excitation cccurs near
time zero. Then what happens for very short times is strongly
dependent on the details of the excitaticn mechanism. However,
rather quickly the states f begin to build up according to the

familiar rate equations which yield exponential behavior

—%—t-‘gfiz =Z Mo leed © - Z [ el ?
= f

f” f'l

2 , . .
where ,gf’ is the probability that the atom is in state f

> E and E < E . Thus

(which may be j ) and where Efv ¢ £ £

r1ff' is the intrinsic or partial transition rate from f' to f
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and is therefore the physically measureable guanﬁity, but it is onty |

for times near zero that, for f # j that =~E?£—— = fﬂfj . The rate
equations of course guarantee that E% [gfl 2)= 0 , i,e. that

probability is conserved. After very long times the behavior again
deviates from that described by the rate equation.

If one also egaTines the photon state associated with the atomic '

transition j~=»f one finds that the photon need no longer be

monochromatic, Rather there is a frequency distribution peaked very

near to &«o= (Ej - Ef)ﬁﬂ with a (natural) width equal to

fll
this result with the conservation of energy by interpreting it as being

T;f] +Z r;"f , where E_LKE, and E_,<E_. . One can reconcile

due to a broadening of the levels f and j by the amounts 4§: r}"f

and '4§: Tzﬁ respectively, due to the interaction with the £
’

radiation field. More precisely, due to this interaction the states

£

j and f (unless the latter is the ground state) are no longer
stable states, i.e. well defined energy eigenstates, but rather,
depending on the numbers, are more or less long lived, more or less

well-defined, metastable, resonant states in the continuum, their

sharpness of definition being determined by the ratio of width to spacing.

[44] As our second application, let us consider a problem of the

type for which we did derive our approximation - the photoelectric

effect in hydrogen. Thus




(photon k,s) (atom in state o)

<
!
1]

Vg

(photon vacuum) (atom ionized in state f )

Here clearly it is the gg,s‘ P, %5,_ term which contributes,
the matrix element of a being unity (N = 1), Fur ther
k;s k,s
= +A4 o i ' = ) ,
Ef = E_ A , while E. E Thus.we have
2 2
] 2mhce e ikex 2
T, (k:s) e . - (fizel»}g_"_go)i
a)kL3 mlc2 =7

Now it is the electron we detect and it is the electron which is
in the continuum (when L-% 00 ), To first apprcoximation its wave

function is a plane wave

1 ig /b
Y = e
£ \IL»‘E
_ 2
Ef - 4 /2m

where g 1is its momentum. A more accurate approximation, to take
account of the influence of the electric field of the proton is

to replace the plane waves by a continuum wave function for hydrogen,
which, at large distances from the proton, takes the form of a

plane wave plus incoming spherical wave. That it is incoming rather

46



than outgoing is no doubt surprising but Wwe& will not pursue the
matter further. The pcint we want tc make is that in any case
Tfo(h,s) is proportional to ~%g‘

Now as we said the electron which we detect, like the photon
in [39],13 in the continuum. To get a formula to compare with
experiment we proceed as we did there. We first sum over all final
electron states. This involves z%%gg L/ﬂdg (the derivation of

this prescription had nothing to do with photons or quanta, only

with plane waves and periodic boundary conditions). Writing

Paga Q= ¢® 4 4Q dE
q dE 1

dg

mq2d ﬂ idEf

we can carry out the integration over Ef and then, as before,
identify the integrand with a differential t:ansition probability.
The point we now want to emphasize (we will not writg down the
detailed formulae) is that the result is proportional to z%—
and therefore vanishes as L% ©0 ! |

[55:] On the one hand, this is a satisfying result. It means that
there are no '"time limitations' on our formula, no danger of
transition probabilities becoming greater than one (recall [AB] ).

The only limitation on the perturbation theory being the magnitude

of V . On the other hand it does not seem very interesting

physically.
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To get an interesting result, let us note that the transition
rate really involves two factors: (i) The probability that the
photon will encounter the atom, (ii) The intrinsic rate at which a
transition will then occur. It is the second factor which is
interesting and it is the first which is smzll beczuse we have
(unphysically) described the photon "beam'" by a plane wave in a box
of volume L3 s therefore the photon density is iV'=i§-d>0 .

A quantity which is insensitive to the details of the photon

beam is the differential cress=section

differential transition rate

probability that a photon will cross unit area/sec.

and is representative of the physically interesting second factor.
The denominator, the photon flux, can be calculated from the Poynting
vector or by the following simple argument: The probability of
crossing unit area/sec = probability that the photon is in a volume
of unit cross-section and a depth of one second times ¢ = ratio

of that volume to L3 = c/13 . Thus, as expected, the L3's do

cancel out in do- .

iﬁé.] We have indicated how to calculate the photoelectric effect
due to one quantum. One can also have an effect involving say
two quanta and, indeed, such effects have been observed using lasers.

Thus one might have




+ L\""'\.LI
™

in 1st order + V1 in 2nd order .
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FOURTH LECTURE

[47.] We now will derive the (classical) Thomson Formula for the

scattering of light by a charged particle. Here

WI = (photon k,s ) (particle at rest)

WF = (photonAkf,s' ) (particle with momentum g ).
V2 can produce this process in lst order. As far as the photons
are concerned V can produce the process in second order (which

1

is the same order in charge as V, - recall [36]) using the

formula quoted in [36] . Here the states F' would involve either
no quanta or two quanta (see [48] below). However, because the
particle is initially at rest, and because V1 involves the
momentum operator, (F | Vll I) 1is anyway zero. Thus we are’ left
with the contribution of V2 .

The terms which can contribute are clearly either the
* *

a a or the a, a terms. Each yields the same
K, s’ k,s k,s fh',s' 7

*
electronic matrix element with the matrix elements of ak s akr s'
. -_— 3

*
and a}s,,s,ak’S equal to one. Thus we have
212 2
‘s 21 | 2mhc 1 e 2 2
T(kys’ 3k,s) = —-\ 3 ] ( ) 2€ ., . € )
'ﬁ L wkwk’ szZ k ’S_ E,S

. ’ . . .
, f_l_ clax/ -ikex ikex ‘{:%r dx
i3 L

¢ §(q° + Ao’ - hew )
2m



1 . , .
where - is the Wave function for the particle at rest and
'L3' P

1 eig-gﬁﬁ
L
integral is easily done and yields s

is that for the particle with momentum g . The

(q/h + 1),k

delta expressing conservation of momentum. From now on, we

will assume momentum conservation, hence we may simply drop the
Kronecker & . For this process we have two particles in the
continuum which we can detect in the final state; However, the
conservation of energy and momentum fix the momentum (and energy)
of one, given the momentum of the other. Thusvif we sum over one
of them, we have automatically summed over the other. Let us
concentrate on the photon.

The conservation laws determine q2 as a function of g'
(given k). Hence, if we denote JE + A’ - Bw by ¥ , in

2m

carrying out our sum over photons, prior to identifying the

differential cross-section, we must write

a’ = k2 aK dﬂk,

k’z(d_k’ aLd ¥
). =

so that we can carry out the ¥ integration using the § - function.
"Handling" the & function is thus a bit more complicated here
than it was in our earlier examples.

However, let us confine ourselves to A{wk << mc2 . Then

2 .
one readily shows, from the conservation laws that q /2m is

i.e. a Kronecker
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negligible, i.e., wke-' C'Jkl . Omitting the _q_?'_ then the

2m
complication just mentioned disappears and we infer, after doing

the wk, integral and dividing by the incident photon flux that

the differential cross-section is

doe &%, s’; k,s) = 2« (Zﬂ‘ﬁcz)z 1 e 2.

A L3 COE 2me 2
o 2 2

(2 e"}s':S' §=,§) 1.3 . aQ) .,
o/, 3 (2n)" he® =

Note that this formula contains no A . It is exactly the classical

Thomson formula.

‘_48.] As our final scattering application we consider the scattering

of light by an atom. This will lead to the Kramers-Heisenberg

dispersion formula and the Raman effect. We are interested in the

following process:

= (73
I Ej+'ﬁ e

WI (photon k,s) (atom state j) , E

(photon l{_’ , s' ) (atom state f ), EF = Ef +»ﬁwk,

<=
]
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*
R . . a
V2 can produqe this in first order from either the %k’,s’ k,s
%* . . .
or the ¢/ s terms just as in [;47] , and each yields the

a a
k,s k',s

. . . *
same electronic matrix element, the matrix elements of E and
J b4

*
a g o again being unity.
-2

V1 can produce this in second order (which is the same order

in the charge as V, - recall [ 311 ) the possible intermediate

2
states in the formula of [36] being

/
WF’ =  (photon vacuum) (Atom in any state f )
with E; - Epr = Ej +/HaJk - Egv or
’
WF/ =  (photon k,s and photon 5’ ,s’ ) (atom in any state f )
i - / = - - -
with E; - Eg E; +AHew - Eys fw, /ﬁwk/

For the first type of intermediate state we have the matrix elements

' ’ * ’ V4
(FlVllF)(F |v1| 1) ~ (Flgk, S,IF ) (F laksll)

— ) b

while for the second type,

FLV I EOE V1D~ Ela L PO E Ty 4D
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Diagrammatically (recall L37]) we can represent the first process by

L

I AN 4
k,s

k,s /,/

and the second by

ta
-
]

*
Again the matrix elements of the a and a are equal to omne

and we find for M defined by

1V | F/)EAVLIT)

M = (F|V2|I) +Z
¥ Ep - Epe

the following formula:

% E
M = [2nﬁc2]2{2nﬁc2]12
- 3 3

2mc 2

2 ;‘ i(k-k")-x,

2. e €.+ 4,0 ¢ f e == =il: )

S =uds” s ’ , 13
1

r'4
-11e« o, 'k. ,
+ g Z ] € o Z p, e EEA S g Z Py S B
=) —_—3% 4

m2c2 £ i
Ej +‘ﬁwk - E.s ,
2 ik.x. ¢ 'z e P E‘e e_l-ls '5‘ .
+ 4 Z (flé_};’s._ %e—_llf Y (£ ',.,_k:,s Z ,J)

Ej —rﬁwk - Ege
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Energy conservation now implies

.Ej+zﬁwk=Ef+/ﬁwkz .

If Ef = Ej , we are dealing with elastic scattering - often called

Rayleigh scattering.

If Ef5£ Ej , we have inelastic or Raman Scattering,

A - A w equalling some atomic energy difference.

If Ef > Ej (atom originally in its ground state),

ey s < w, while if Ef < Ej (atom originally in an excited state)
ad SR S

In the by now we hope familiar fashion, we can infer the

formula for the differential scattering cross-section:

y . 2 s L |3 «f’
40 ®s” ,f 5k 5,9 = c (2« ) Fc3 a Qe
L3

We will not write it oeut in all detail.

[;9:] We will, however, make several comments on the formula.

First of all, if the dipole approximation is valid (all exponentials

equal to unity)then it becomes the Kramers-Heisenberg formula

(n is the number of electrons)
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Note that in this approximation V2 has become independent of the

electronic coordinates and therefore contributes only to elastic

scattering. It is the most important term in the x-ray region

and yields just

do n2 dd(T (Thomson)
dL0), <

i.e. at high frequencies the binding c¢f the electrons is unimportant

(hence the free Thomson cross-section) but the electrons do scatter
2 AY

coherently (n rather than n ).

Another point is that if 4ia’k. is equal to Efz - Ej
’
for some f the corresponding term in the first sum in the

’

formula for M blows up while if A cw K = Ef - E.+ for some f

. L4 _ -n o, = _ _ ,
(copservation of energy implies Ej /ﬁauk, Egs Eg 'ﬁéuk E, )
the corresponding term in the second sum blows up - we have a

resonance and clearly our formula is invalid (Actually this is

’
the case only if £ 1is a discrete state. Tor states in the
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continuum, the perturbation procedure automatically provides a

prescription for avoiding the singularity) - the coupling has gotten

too strong (recall remarks at beginning of [45:]). However , methods

can be found to deal with this situation.

{50.] There is a close connection between the forward elastic

scattering in the dipole approximation and the index of refraction

(Recall that forward elastic scattering from a number of centers
is always coherent whatever the motion of the centers since the game

optical path length is involved for all the centers:

N
r

Y

"
Ll

Hence it is not surprising that it is this scattering which is

involved in the coherent refraction phenomenon.) More precisely one
. . l 2 Q R R

can show that if we write d6~ = [D d K’ and if the index

of refraction is close to unity, then

index of refraction = 1 + 2n No Qi%)
k

where D(o) 1is the value of D for forward elastic scattering,
and where No is the number of atoms per unit volume. Since we

also have
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index of refraction = 1 + 2z No (Frequency dependent atomic polarizability)

it also follows that (as one can also show directly by mgnipulation of
the formula for D(0))

D(o)

Frequency dependent atomic polarizability = >
k
[51.] Let us suppose that we were dealing with not one atom but
two atoms. Then if we consider elastic scattering there are two ways

of reaching the same final state, either by atom 1 scattering and 2

being unaffected, or by atom 2 scattering, and 1 being unaffected.
Now in our discussion involving one atom we have, implicitly,
referred electronic coordinates to the nucleus as an origin. With
two atoms, suppose we use an arbitrary origin. Then it is clear

from our formula for M , which is quite general, that we will

now have
/ /
mo= eFE kDB oy ik -k )Ry
1 2
where 51 and _52 are the positions of the ndclei of atoms 1 and 2
and where M1 is the M of (43) calculated for Atom 1 with

electronic coordinates referred to its nucleus, and similarly for M2 .
. 2 . .
Since dO@* 1involves ’ M' we see that, just as classically, we

will get interferences effects.
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[52;] We now turn from scattering problems to energy considerations -

the shifts in atomic energy levels produced by V . Since, however,

to do the job right one really needs relativistic mechanics for the
electrons (the Dirac equation) and indeed - even better, the quantum
field theory of electrons and positrons - we will merely indicate
the results.

Suppose we simply just replace the non-relativistic electronic
Hamiltonians for each electron by Dirac Hamiltonians. 1In addition
to being more correct physically this also leads to a formal
simplification - there is no term which looks like V2 , only a

term like V linear in the vector potential (and with Y

1 b
replaced by a Dirac Matrix g!_i )} and given as a sum over the

particles. Let us write it as
vV = E: v. ‘A,
-1, —i
i

where v, involves @, and constants. Diagrammatically, it yields
i

or

Our unperturbed state 1is

WI = (photon vacuum) (atom in state j )

and the energy shift through second order is given by the familiar

formula
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/
D L 5D - v +Z CIVIBELY LD

I F

(1

Clearly E = 0 since the average value of éi vanishes
(recall [21]). The E(2>, however , does not vanish; the intermediate

states F for which (F] V| I) 1is non zero are

\lfF = (any one photon k,s ) (atom in any state f )
*

i - = - - . t f Vv
with EI EF Ej Ef /Hwk The ak-,S parts o 1
contribute to (FIV| I) and the Hermitian conjugate a, . part

—_2

to (I} VVF ), and we can represent E(z) diagrammatically as

The sum over intermediate states thus means a sum over f and over
. * )
k and s . . Since the matrix elements of a o and a o yield
_> -—3

unity we are left with (letting L ~»eo)

2 dk .
2 e z' k , E kox,
) f oo L Ol ve, 5% 10)
f s i

(£l) v & s e 5)
Ej - Eg -/Ha)k
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First consider the terms i = £ which one can think of as being
produced by electron i emitting and absorbing the photon. One
can show that they are infinite. We return to this point below.
The terms 12 A are finite and one can think of them as being

pr oduced by electrons i and £ exchanging one photon. Formally

one can write them as

GLE ) ) by 19)

igl

where the bil involve only electronic variables (we have "integrated
out the photons'"). Thus it is as though the photon exchange has

produced an additional interaction, bil , over and above the

. 2
coulomb interaction, e between electrons and we were

L

calculating its effects using first order perturbation theory.

Under certain approximations b can be exhibited explicitly as

it

the famous Breit-Interaction, which in turn can be approximated by

the Breit-Pauli Interaction.

[53J Before turning to the infinite terms i =4 , let us remark
that in all our calculations of sc¢attering processes we calculated

only to the lowest nonvanishing order in the charge, i.e. we used

the lowest order of perturbation theory we could to get the effect.
However, one can, of course carry perturbation theory to all orders

in V . The results are most easily expressed in terms of diagrams.
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Consider, for example, Thomson scattering again. Then in addition to

a contribution FC:: from V2 in first order there are

contributions like ‘isssr from using V, once and V. twice

2 1
in the third order formula. {L::

Another way of stating the approximation we have made is that,

except in our discussion of energy shifts, we have never introduced

virtual quanta, i.e. quanta which do not appear in either initial
or final states but which are created and then destroyed in
intermediate states. If one does so, i.e. if one attempts to

calculate higher order corrections (''Radiative corrections') one

always gets divergences.

Now in fact, there is a way of handling these divergences.

Using all the machinery of the Dirac equation and positron theory,
one can show that there exist two (infinite) constants S’n and
Se , given as power series in the fine structure constant such
that, if one expresses the divergent formulas consistently (i.e.,

to the appropriate power of the fine structure constant) in terms

of mo = m + 8&m and e, = e + 8Se rather than in terms
of m and e , then, a "miracle occurs': These formulas become
finite functions of e, and L One may then identify the latter

with the observed charge and mass, e and m being the "bare"
charge and mass. This procedure is called charge and mass

renormalization, e, and m often being called the renormalized

charge and mass, e and m the unrenormalized charge and mass.
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Though clearly a bit suspicious (some call it '"ugly"), this
procedure has yielded very impressive results. The radiative
corrections become small corrections when expressed in terms of
e, and m Also, for example, the analogue of the i =4 terms
mentioned earlier then yield with great accuracy the Lamb shifts

in hydrogen and Helium and the anomalous magnetic moment of the

electron.

Before the latter effects had been verified experimentally,
around 1947, radiative corrections were almost universally ignored.
However, some wise men warned that '"just because they are infinite

does not mean that they are zero'. They were right!

THE END




